johnson.briana52
johnson.briana52 2d ago โ€ข 0 views

Test Questions: Applying the First Shifting Theorem for Inverse Laplace Transforms in DE

Hey there! ๐Ÿ‘‹ Let's solidify your understanding of the First Shifting Theorem for Inverse Laplace Transforms! This study guide and quiz will help you master this topic in DE. Good luck!
๐Ÿงฎ Mathematics

1 Answers

โœ… Best Answer
User Avatar
julie_bailey Jan 7, 2026

๐Ÿ“š Quick Study Guide

  • ๐Ÿ”‘ The First Shifting Theorem states that if $\mathcal{L}^{-1}{F(s)} = f(t)$, then $\mathcal{L}^{-1}{F(s-a)} = e^{at}f(t)$.
  • ๐Ÿ”ข To apply the theorem, manipulate the given expression to match the form $F(s-a)$. Identify $F(s)$ and $a$.
  • ๐Ÿ”„ Find the inverse Laplace transform of $F(s)$, which is $f(t)$.
  • ๐Ÿš€ Multiply $f(t)$ by $e^{at}$ to obtain the final inverse Laplace transform: $e^{at}f(t)$.
  • ๐Ÿ“ Remember to complete the square in the denominator when necessary to match the required form.

Practice Quiz

  1. Question 1: What is the inverse Laplace transform of $\frac{1}{s-3}$?
    1. $e^{3t}$
    2. $e^{-3t}$
    3. $t e^{3t}$
    4. $t e^{-3t}$
  2. Question 2: Find the inverse Laplace transform of $\frac{2}{(s+2)^2}$.
    1. $2te^{-2t}$
    2. $2te^{2t}$
    3. $e^{-2t}$
    4. $e^{2t}$
  3. Question 3: What is the inverse Laplace transform of $\frac{1}{s^2 + 2s + 2}$?
    1. $e^{-t}\sin(t)$
    2. $e^{t}\sin(t)$
    3. $e^{-t}\cos(t)$
    4. $e^{t}\cos(t)$
  4. Question 4: Determine the inverse Laplace transform of $\frac{s}{s^2 + 4s + 5}$.
    1. $e^{-2t}(\cos(t) - 2\sin(t))$
    2. $e^{2t}(\cos(t) - 2\sin(t))$
    3. $e^{-2t}(\cos(t) + 2\sin(t))$
    4. $e^{2t}(\cos(t) + 2\sin(t))$
  5. Question 5: Calculate the inverse Laplace transform of $\frac{1}{(s-1)^3}$.
    1. $\frac{t^2e^{t}}{2}$
    2. $\frac{t^2e^{-t}}{2}$
    3. $t^2e^{t}$
    4. $t^2e^{-t}$
  6. Question 6: What is the inverse Laplace transform of $\frac{s+2}{s^2 + 2s + 5}$?
    1. $e^{-t}\cos(2t)$
    2. $e^{t}\cos(2t)$
    3. $e^{-t}\sin(2t)$
    4. $e^{t}\sin(2t)$
  7. Question 7: Find the inverse Laplace transform of $\frac{1}{s^2 + 6s + 13}$.
    1. $\frac{1}{2}e^{-3t}\sin(2t)$
    2. $\frac{1}{2}e^{3t}\sin(2t)$
    3. $e^{-3t}\sin(2t)$
    4. $e^{3t}\sin(2t)$
Click to see Answers
  1. A
  2. A
  3. A
  4. A
  5. A
  6. A
  7. A

Join the discussion

Please log in to post your answer.

Log In

Earn 2 Points for answering. If your answer is selected as the best, you'll get +20 Points! ๐Ÿš€