adkins.steven9
adkins.steven9 6d ago • 0 views

Solved Examples of Block Matrix Determinant Calculations

Hey there! 👋 Block matrices can seem intimidating, but breaking down their determinants doesn't have to be! Let's walk through some examples together. 🤓
🧮 Mathematics

1 Answers

✅ Best Answer
User Avatar
megan_morales Jan 7, 2026

📚 Quick Study Guide

    🔢 Block Matrix: A matrix partitioned into submatrices called blocks. ➗ Determinant of a Block Diagonal Matrix: If $A = \begin{pmatrix} A_{11} & 0 \\ 0 & A_{22} \end{pmatrix}$, then $\det(A) = \det(A_{11}) \cdot \det(A_{22})$. ➕ Determinant of a Block Triangular Matrix: If $A = \begin{pmatrix} A_{11} & A_{12} \\ 0 & A_{22} \end{pmatrix}$ or $A = \begin{pmatrix} A_{11} & 0 \\ A_{21} & A_{22} \end{pmatrix}$, then $\det(A) = \det(A_{11}) \cdot \det(A_{22})$. 💡 Important Note: These rules apply only when the off-diagonal blocks are zero matrices or when dealing with triangular configurations.

🧪 Practice Quiz

  1. Question 1: Given the block matrix $A = \begin{pmatrix} 1 & 2 & 0 & 0 \\ 3 & 4 & 0 & 0 \\ 0 & 0 & 5 & 6 \\ 0 & 0 & 7 & 8 \end{pmatrix}$, what is $\det(A)$?
    1. -2
    2. 2
    3. -4
    4. 4
  2. Question 2: Compute the determinant of the block matrix $B = \begin{pmatrix} 2 & 1 & 0 & 0 \\ 1 & 2 & 0 & 0 \\ 0 & 0 & 3 & 1 \\ 0 & 0 & 1 & 3 \end{pmatrix}$.
    1. 8
    2. 10
    3. 12
    4. 14
  3. Question 3: Let $C = \begin{pmatrix} 1 & 0 & 2 & 3 \\ 0 & 1 & 4 & 5 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix}$. Find $\det(C)$.
    1. 0
    2. 1
    3. 2
    4. -1
  4. Question 4: Determine the determinant of $D = \begin{pmatrix} 2 & 0 & 1 & 1 \\ 0 & 2 & 1 & 1 \\ 0 & 0 & 3 & 0 \\ 0 & 0 & 0 & 3 \end{pmatrix}$.
    1. 18
    2. 36
    3. 9
    4. 6
  5. Question 5: Calculate the determinant of $E = \begin{pmatrix} 1 & 1 & 0 & 0 \\ 1 & -1 & 0 & 0 \\ 0 & 0 & 2 & 1 \\ 0 & 0 & 1 & 2 \end{pmatrix}$.
    1. -6
    2. -3
    3. 3
    4. 6
  6. Question 6: Find the determinant of the following matrix: $F = \begin{pmatrix} 0 & 1 & 0 & 0 \\ 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 1 & 0 \end{pmatrix}$.
    1. 1
    2. -1
    3. 0
    4. 2
  7. Question 7: Consider the block matrix $G = \begin{pmatrix} 3 & 1 & 0 & 0 \\ 0 & 3 & 0 & 0 \\ 0 & 0 & 4 & 2 \\ 0 & 0 & 2 & 4 \end{pmatrix}$. What is $\det(G)$?
    1. 72
    2. 144
    3. 36
    4. 18
Click to see Answers
  1. C
  2. C
  3. B
  4. B
  5. A
  6. A
  7. B

Join the discussion

Please log in to post your answer.

Log In

Earn 2 Points for answering. If your answer is selected as the best, you'll get +20 Points! 🚀