📚 Quick Study Guide
🧭 - Parametric Equations: A set of equations that express a set of quantities as explicit functions of independent variables, known as "parameters." Often represented as $x = f(t)$ and $y = g(t)$.
📐 - First Derivative: The first derivative $\frac{dy}{dx}$ of a parametric curve defined by $x = f(t)$ and $y = g(t)$ is given by $\frac{dy}{dx} = \frac{\frac{dy}{dt}}{\frac{dx}{dt}}$, provided $\frac{dx}{dt} \neq 0$.
⏱️ - Chain Rule: Essential for finding the derivative. Remember that $\frac{dy}{dx} = \frac{dy}{dt} \cdot \frac{dt}{dx}$.
💡 - Notation: $\frac{dx}{dt}$ represents the derivative of $x$ with respect to $t$, and $\frac{dy}{dt}$ represents the derivative of $y$ with respect to $t$.
📝 - Simplification: Always simplify your final answer to its simplest form.
🧪 Practice Quiz
Question 1:
If $x = t^2$ and $y = 2t$, find $\frac{dy}{dx}$.
A) $t$
B) $\frac{1}{t}$
C) $2t$
D) $\frac{1}{2t}$
Question 2:
Given $x = \sin(t)$ and $y = \cos(t)$, determine $\frac{dy}{dx}$.
A) $\tan(t)$
B) $-\tan(t)$
C) $\cot(t)$
D) $-\cot(t)$
Question 3:
If $x = e^t$ and $y = t^2$, find $\frac{dy}{dx}$.
A) $2te^{-t}$
B) $2te^{t}$
C) $t^2e^{-t}$
D) $t^2e^{t}$
Question 4:
Let $x = t^3 + 1$ and $y = t^2 - 1$. Determine $\frac{dy}{dx}$.
A) $\frac{2}{3t}$
B) $\frac{3t}{2}$
C) $\frac{2t}{3t^2}$
D) $\frac{3t^2}{2t}$
Question 5:
If $x = \ln(t)$ and $y = \sqrt{t}$, find $\frac{dy}{dx}$.
A) $\frac{1}{2\sqrt{t}}$
B) $\frac{\sqrt{t}}{2}$
C) $\frac{t}{2\sqrt{t}}$
D) $\frac{1}{2}t^{\frac{3}{2}}$
Question 6:
Given $x = \cos(2t)$ and $y = \sin(2t)$, find $\frac{dy}{dx}$.
A) $-\tan(2t)$
B) $\tan(2t)$
C) $-\cot(2t)$
D) $\cot(2t)$
Question 7:
If $x = t + \frac{1}{t}$ and $y = t - \frac{1}{t}$, find $\frac{dy}{dx}$.
A) $\frac{t^2 + 1}{t^2 - 1}$
B) $\frac{t^2 - 1}{t^2 + 1}$
C) $1$
D) $-1$
Click to see Answers
- B) $\frac{1}{t}$
- B) $-\tan(t)$
- A) $2te^{-t}$
- C) $\frac{2t}{3t^2}$
- C) $\frac{t}{2\sqrt{t}}$
- D) $\cot(2t)$
- B) $\frac{t^2 - 1}{t^2 + 1}$