๐ Quick Study Guide
๐ When dealing with definite integrals and u-substitution, remember to change the limits of integration to be in terms of $u$. If your original limits are $a$ and $b$ (for $x$), and you let $u = g(x)$, then your new limits will be $g(a)$ and $g(b)$.
๐ก The formula for u-substitution in definite integrals is:
$\int_{a}^{b} f(g(x))g'(x) dx = \int_{g(a)}^{g(b)} f(u) du$
๐ Key steps:
- Choose a suitable $u$ (often the inner function).
- Find $du$.
- Change the limits of integration.
- Evaluate the new integral with respect to $u$.
Practice Quiz
Question 1:
$\int_{0}^{2} x(x^2 + 1)^3 dx = ?$ where $u = x^2 + 1$
A) 60
B) 50
C) 40
D) 30
Question 2:
$\int_{0}^{1} x e^{x^2} dx = ?$ where $u = x^2$
A) $\frac{1}{2}(e - 1)$
B) $e - 1$
C) $\frac{1}{2}e$
D) $e$
Question 3:
$\int_{1}^{2} \frac{2x}{x^2 + 1} dx = ?$ where $u = x^2 + 1$
A) $\ln(5/2)$
B) $\ln(5/3)$
C) $\ln(2)$
D) $\ln(3)$
Question 4:
$\int_{0}^{\sqrt{\pi}} x \cos(x^2) dx = ?$ where $u = x^2$
A) 0
B) 1
C) 2
D) -1
Question 5:
$\int_{0}^{\pi/2} \sin(x) \cos(x) dx = ?$ where $u = \sin(x)$
A) 1/2
B) 1
C) -1/2
D) -1
Question 6:
$\int_{0}^{1} \frac{x}{x^2+4} dx = ?$ where $u = x^2+4$
A) $\frac{1}{2} \ln(\frac{5}{4})$
B) $\ln(\frac{5}{4})$
C) $\frac{1}{4} \ln(\frac{5}{4})$
D) $\frac{1}{3} \ln(\frac{5}{4})$
Question 7:
$\int_{0}^{\pi/4} \tan(x) \sec^2(x) dx = ?$ where $u = \tan(x)$
A) 1/2
B) 1
C) -1/2
D) -1
Click to see Answers
- B) 50
- A) $\frac{1}{2}(e - 1)$
- A) $\ln(5/2)$
- A) 0
- A) 1/2
- A) $\frac{1}{2} \ln(\frac{5}{4})$
- A) 1/2