steven489
steven489 4h ago โ€ข 0 views

Solved examples: Applying the Chain Rule to trigonometric functions

Hey everyone! ๐Ÿ‘‹ Trigonometry and the chain rule can feel like a tough combo, but with practice, you'll get it! This guide breaks it down with examples, followed by a quick quiz to test your skills. Let's get started! ๐Ÿงฎ
๐Ÿงฎ Mathematics

1 Answers

โœ… Best Answer
User Avatar
andrea.cantu Dec 28, 2025

๐Ÿ“š Quick Study Guide

  • ๐Ÿ“ The Chain Rule: If $y = f(g(x))$, then $\frac{dy}{dx} = \frac{dy}{dg} \cdot \frac{dg}{dx}$.
  • ๐ŸŽ Trigonometric Derivatives: Remember these key derivatives:
    • $\frac{d}{dx}(\sin x) = \cos x$
    • $\frac{d}{dx}(\cos x) = -\sin x$
    • $\frac{d}{dx}(\tan x) = \sec^2 x$
    • $\frac{d}{dx}(\csc x) = -\csc x \cot x$
    • $\frac{d}{dx}(\sec x) = \sec x \tan x$
    • $\frac{d}{dx}(\cot x) = -\csc^2 x$
  • ๐Ÿ’ก Applying the Chain Rule to Trigonometric Functions: Combine the chain rule with trigonometric derivatives. For example, if $y = \sin(x^2)$, then $\frac{dy}{dx} = \cos(x^2) \cdot 2x$.
  • ๐Ÿ“ General Steps:
    1. Identify the 'outer' and 'inner' functions.
    2. Differentiate the outer function, keeping the inner function as is.
    3. Multiply by the derivative of the inner function.

๐Ÿงช Practice Quiz

  1. What is the derivative of $y = \sin(3x)$?

    1. $3\cos(3x)$
    2. $\cos(3x)$
    3. $-3\cos(3x)$
    4. $-\cos(3x)$
  2. Find $\frac{dy}{dx}$ if $y = \cos(x^2 + 1)$.

    1. $-2x\sin(x^2 + 1)$
    2. $2x\sin(x^2 + 1)$
    3. $-\sin(x^2 + 1)$
    4. $\sin(x^2 + 1)$
  3. Differentiate $y = \tan(2x)$.

    1. $2\sec^2(2x)$
    2. $\sec^2(2x)$
    3. $2\cot(2x)$
    4. $\cot(2x)$
  4. What is the derivative of $y = \csc(5x)$?

    1. $-5\csc(5x)\cot(5x)$
    2. $5\csc(5x)\cot(5x)$
    3. $-\csc(5x)\cot(5x)$
    4. $\csc(5x)\cot(5x)$
  5. Find $\frac{dy}{dx}$ if $y = \sec(x^3)$.

    1. $3x^2\sec(x^3)\tan(x^3)$
    2. $\sec(x^3)\tan(x^3)$
    3. $3x^2\tan(x^3)$
    4. $\sec(3x^2)\tan(3x^2)$
  6. Differentiate $y = \cot(4x)$.

    1. $-4\csc^2(4x)$
    2. $4\csc^2(4x)$
    3. $-\csc^2(4x)$
    4. $\csc^2(4x)$
  7. What is the derivative of $y = \sin^2(x)$?

    1. $2\sin(x)\cos(x)$
    2. $\sin(x)\cos(x)$
    3. $2\cos(x)$
    4. $\cos^2(x)$
Click to see Answers
  1. A
  2. A
  3. A
  4. A
  5. A
  6. A
  7. A

Join the discussion

Please log in to post your answer.

Log In

Earn 2 Points for answering. If your answer is selected as the best, you'll get +20 Points! ๐Ÿš€