andrew_lewis
andrew_lewis 7d ago โ€ข 6 views

High School Calculus Quotient Rule Exam Questions and Self-Assessment.

Hey there! ๐Ÿ‘‹ Getting ready for your calculus exam on the quotient rule? It can be a bit tricky, but with a good review and some practice, you'll ace it! Let's start with a quick study guide and then test your knowledge with a quiz. Good luck! ๐Ÿ‘
๐Ÿงฎ Mathematics

1 Answers

โœ… Best Answer
User Avatar
jessica213 Dec 27, 2025

๐Ÿ“š Quick Study Guide

  • โž— The Quotient Rule is used to find the derivative of a function that is the ratio of two other functions.
  • ๐Ÿ“ Formula: If $f(x) = \frac{g(x)}{h(x)}$, then $f'(x) = \frac{g'(x)h(x) - g(x)h'(x)}{[h(x)]^2}$.
  • โš ๏ธ Remember: The order of the terms in the numerator matters! It's (derivative of the top) times (bottom) minus (top) times (derivative of the bottom).
  • ๐Ÿ’ก Tip: Practice identifying $g(x)$ and $h(x)$ correctly before applying the rule.
  • ๐Ÿง  Notation: $g'(x)$ and $h'(x)$ represent the derivatives of $g(x)$ and $h(x)$, respectively.
  • ๐Ÿ“ˆ Application: The quotient rule is essential for differentiating many complex functions in calculus.

๐Ÿงช Practice Quiz

  1. What is the derivative of $f(x) = \frac{x^2}{x+1}$?
    1. $A) \frac{x^2 + 2x}{(x+1)^2}$
    2. $B) \frac{x^2 - 2x}{(x+1)^2}$
    3. $C) \frac{2x}{1}$
    4. $D) \frac{x^2 + 1}{(x+1)^2}$
  2. Find the derivative of $f(x) = \frac{\sin(x)}{x}$.
    1. $A) \frac{x\cos(x) - \sin(x)}{x^2}$
    2. $B) \frac{\cos(x)}{1}$
    3. $C) \frac{x\cos(x) + \sin(x)}{x^2}$
    4. $D) \frac{\cos(x) - \sin(x)}{x^2}$
  3. Calculate the derivative of $f(x) = \frac{e^x}{x^2}$.
    1. $A) \frac{e^x(x-2)}{x^3}$
    2. $B) \frac{e^x(x+2)}{x^4}$
    3. $C) \frac{e^x}{2x}$
    4. $D) \frac{e^x(x^2 - 2x)}{x^4}$
  4. Determine $f'(x)$ for $f(x) = \frac{x^3}{\cos(x)}$.
    1. $A) \frac{3x^2\cos(x) + x^3\sin(x)}{\cos^2(x)}$
    2. $B) \frac{3x^2\cos(x) - x^3\sin(x)}{\cos^2(x)}$
    3. $C) \frac{3x^2}{-\sin(x)}$
    4. $D) \frac{3x^2}{\cos^2(x)}$
  5. What is the derivative of $f(x) = \frac{\ln(x)}{x}$?
    1. $A) \frac{1 - \ln(x)}{x^2}$
    2. $B) \frac{\ln(x) - 1}{x^2}$
    3. $C) \frac{1}{x^2}$
    4. $D) \frac{1}{x}$
  6. Find the derivative of $f(x) = \frac{x+2}{x-2}$.
    1. $A) \frac{-4}{(x-2)^2}$
    2. $B) \frac{4}{(x-2)^2}$
    3. $C) \frac{1}{1}$
    4. $D) \frac{-4}{(x+2)^2}$
  7. Calculate $f'(x)$ for $f(x) = \frac{\tan(x)}{x}$.
    1. $A) \frac{x\sec^2(x) - \tan(x)}{x^2}$
    2. $B) \frac{\sec^2(x) - \tan(x)}{x^2}$
    3. $C) \frac{x\sec^2(x) + \tan(x)}{x^2}$
    4. $D) \frac{\sec^2(x)}{1}$
Click to see Answers
  1. A
  2. A
  3. A
  4. A
  5. A
  6. A
  7. A

Join the discussion

Please log in to post your answer.

Log In

Earn 2 Points for answering. If your answer is selected as the best, you'll get +20 Points! ๐Ÿš€