janetkidd2000
janetkidd2000 7d ago โ€ข 0 views

Detailed Examples of Inverse Trig Functions with Restricted Domains

Hey there! ๐Ÿ‘‹ Let's tackle inverse trig functions and their restricted domains. It might seem tricky, but with a little practice, you'll nail it. This guide + quiz will help you master the concepts. Good luck! ๐Ÿ€
๐Ÿงฎ Mathematics

1 Answers

โœ… Best Answer

๐Ÿ“š Quick Study Guide

  • ๐Ÿ” Inverse Sine (arcsin or sin-1): The domain of $\sin^{-1}(x)$ is $[-1, 1]$, and the range is $[-\frac{\pi}{2}, \frac{\pi}{2}]$. This restriction ensures $\sin^{-1}(x)$ is a function.
  • ๐Ÿ“ Inverse Cosine (arccos or cos-1): The domain of $\cos^{-1}(x)$ is $[-1, 1]$, and the range is $[0, \pi]$. This restriction makes $\cos^{-1}(x)$ a function.
  • ๐Ÿ’ก Inverse Tangent (arctan or tan-1): The domain of $\tan^{-1}(x)$ is $(-\infty, \infty)$, and the range is $(-\frac{\pi}{2}, \frac{\pi}{2})$. No restrictions on the input, but the output is limited.
  • ๐Ÿ“ Key Formulas:
    • $\sin(\sin^{-1}(x)) = x$ for $-1 \leq x \leq 1$
    • $\cos(\cos^{-1}(x)) = x$ for $-1 \leq x \leq 1$
    • $\tan(\tan^{-1}(x)) = x$ for all $x$
    • $\sin^{-1}(\sin(x)) = x$ for $-\frac{\pi}{2} \leq x \leq \frac{\pi}{2}$
    • $\cos^{-1}(\cos(x)) = x$ for $0 \leq x \leq \pi$
    • $\tan^{-1}(\tan(x)) = x$ for $-\frac{\pi}{2} < x < \frac{\pi}{2}$
  • ๐Ÿงฎ Understanding Restrictions: The restricted domains are crucial to ensure that the inverse trigonometric functions are indeed functions (i.e., they pass the vertical line test).

๐Ÿงช Practice Quiz

  1. What is the range of the inverse sine function, $\sin^{-1}(x)$?
    1. $(0, \pi)$
    2. $[-\frac{\pi}{2}, \frac{\pi}{2}]$
    3. $(-\infty, \infty)$
    4. $[0, \frac{\pi}{2}]$
  2. What is the domain of the inverse cosine function, $\cos^{-1}(x)$?
    1. $(-\infty, \infty)$
    2. $(-1, 1)$
    3. $[-1, 1]$
    4. $[0, \pi]$
  3. Evaluate $\cos^{-1}(\cos(\frac{\pi}{3}))$.
    1. $\frac{\pi}{2}$
    2. $\frac{\pi}{3}$
    3. $\frac{2\pi}{3}$
    4. $\pi$
  4. What is the range of the inverse tangent function, $\tan^{-1}(x)$?
    1. $[0, \pi]$
    2. $[-\frac{\pi}{2}, \frac{\pi}{2}]$
    3. $(-\frac{\pi}{2}, \frac{\pi}{2})$
    4. $(-\infty, \infty)$
  5. Evaluate $\sin(\sin^{-1}(0.5))$.
    1. $\frac{\pi}{6}$
    2. $0.5$
    3. $1$
    4. $\frac{\pi}{3}$
  6. What is the value of $\cos^{-1}(-1)$?
    1. $0$
    2. $\frac{\pi}{2}$
    3. $\pi$
    4. $2\pi$
  7. Evaluate $\tan^{-1}(1)$.
    1. $\frac{\pi}{6}$
    2. $\frac{\pi}{4}$
    3. $\frac{\pi}{3}$
    4. $\frac{\pi}{2}$
Click to see Answers
  1. B
  2. C
  3. B
  4. C
  5. B
  6. C
  7. B

Join the discussion

Please log in to post your answer.

Log In

Earn 2 Points for answering. If your answer is selected as the best, you'll get +20 Points! ๐Ÿš€