1 Answers
๐ Introduction to Solving 2x2 Linear Systems with Inverse Matrices
A system of linear equations can be represented in matrix form, and solving it using the inverse of a matrix is a powerful technique. This method is particularly useful when dealing with multiple systems with the same coefficients. Let's explore how to solve a 2x2 system using this approach.
๐ Historical Context
The concept of using matrices to solve linear systems has its roots in the work of mathematicians like Arthur Cayley in the 19th century. Matrix algebra provided a concise and efficient way to represent and manipulate linear equations, paving the way for solving complex systems using inverse matrices.
๐ Key Principles
- ๐ข Matrix Representation: Represent the system of equations in the form $AX = B$, where $A$ is the coefficient matrix, $X$ is the variable matrix, and $B$ is the constant matrix.
- โ Finding the Inverse: Calculate the inverse of the coefficient matrix $A$, denoted as $A^{-1}$. For a 2x2 matrix $A = \begin{bmatrix} a & b \\ c & d \end{bmatrix}$, the inverse is given by $A^{-1} = \frac{1}{ad - bc} \begin{bmatrix} d & -b \\ -c & a \end{bmatrix}$, provided that $ad - bc \neq 0$.
- โ Solving for Variables: Multiply both sides of the equation $AX = B$ by $A^{-1}$ to get $X = A^{-1}B$. This gives the solution for the variables.
๐ Step-by-Step Guide
- Step 1: Write the System in Matrix Form
- Step 2: Find the Inverse of Matrix A
- Step 3: Multiply $A^{-1}$ by B
- Step 4: Solve for x and y
Given a system of equations:
$\begin{cases} a_1x + b_1y = c_1 \\ a_2x + b_2y = c_2 \end{cases}$
Represent it as $AX = B$:
$\begin{bmatrix} a_1 & b_1 \\ a_2 & b_2 \end{bmatrix} \begin{bmatrix} x \\ y \end{bmatrix} = \begin{bmatrix} c_1 \\ c_2 \end{bmatrix}$
For $A = \begin{bmatrix} a_1 & b_1 \\ a_2 & b_2 \end{bmatrix}$, the inverse $A^{-1}$ is:
$A^{-1} = \frac{1}{a_1b_2 - a_2b_1} \begin{bmatrix} b_2 & -b_1 \\ -a_2 & a_1 \end{bmatrix}$
Ensure that $a_1b_2 - a_2b_1 \neq 0$ (the determinant is not zero).
Multiply the inverse matrix $A^{-1}$ by the constant matrix $B$ to find the solution matrix $X$:
$X = A^{-1}B$
$\begin{bmatrix} x \\ y \end{bmatrix} = \frac{1}{a_1b_2 - a_2b_1} \begin{bmatrix} b_2 & -b_1 \\ -a_2 & a_1 \end{bmatrix} \begin{bmatrix} c_1 \\ c_2 \end{bmatrix}$
Perform the matrix multiplication to find the values of $x$ and $y$.
$\begin{bmatrix} x \\ y \end{bmatrix} = \begin{bmatrix} \frac{b_2c_1 - b_1c_2}{a_1b_2 - a_2b_1} \\ \frac{-a_2c_1 + a_1c_2}{a_1b_2 - a_2b_1} \end{bmatrix}$
Thus, $x = \frac{b_2c_1 - b_1c_2}{a_1b_2 - a_2b_1}$ and $y = \frac{-a_2c_1 + a_1c_2}{a_1b_2 - a_2b_1}$.
๐ Real-world Examples
Consider the system:
$\begin{cases} 2x + 3y = 8 \\ x - y = -1 \end{cases}$
- Matrix Form:
- Inverse of A:
- Multiply $A^{-1}$ by B:
- Solution:
$\begin{bmatrix} 2 & 3 \\ 1 & -1 \end{bmatrix} \begin{bmatrix} x \\ y \end{bmatrix} = \begin{bmatrix} 8 \\ -1 \end{bmatrix}$
$A^{-1} = \frac{1}{(2)(-1) - (3)(1)} \begin{bmatrix} -1 & -3 \\ -1 & 2 \end{bmatrix} = \frac{1}{-5} \begin{bmatrix} -1 & -3 \\ -1 & 2 \end{bmatrix} = \begin{bmatrix} \frac{1}{5} & \frac{3}{5} \\ \frac{1}{5} & -\frac{2}{5} \end{bmatrix}$
$\begin{bmatrix} x \\ y \end{bmatrix} = \begin{bmatrix} \frac{1}{5} & \frac{3}{5} \\ \frac{1}{5} & -\frac{2}{5} \end{bmatrix} \begin{bmatrix} 8 \\ -1 \end{bmatrix} = \begin{bmatrix} \frac{8}{5} - \frac{3}{5} \\ \frac{8}{5} + \frac{2}{5} \end{bmatrix} = \begin{bmatrix} 1 \\ 2 \end{bmatrix}$
$x = 1$ and $y = 2$
๐ก Conclusion
Solving 2x2 linear systems using inverse matrices provides a structured and efficient method, especially when dealing with multiple systems sharing the same coefficient matrix. Understanding the underlying principles and practicing with examples can make this technique a valuable tool in your mathematical toolkit.
Join the discussion
Please log in to post your answer.
Log InEarn 2 Points for answering. If your answer is selected as the best, you'll get +20 Points! ๐