jay_sanchez
jay_sanchez 4d ago โ€ข 0 views

Steps to solve 2x2 linear systems with inverse matrices.

Hey there! ๐Ÿ‘‹ Solving 2x2 linear systems using inverse matrices can seem tricky, but I'll walk you through it step-by-step. It's all about understanding the process and practicing a bit. Let's get started! ๐Ÿค“
๐Ÿงฎ Mathematics

1 Answers

โœ… Best Answer

๐Ÿ“š Introduction to Solving 2x2 Linear Systems with Inverse Matrices

A system of linear equations can be represented in matrix form, and solving it using the inverse of a matrix is a powerful technique. This method is particularly useful when dealing with multiple systems with the same coefficients. Let's explore how to solve a 2x2 system using this approach.

๐Ÿ“œ Historical Context

The concept of using matrices to solve linear systems has its roots in the work of mathematicians like Arthur Cayley in the 19th century. Matrix algebra provided a concise and efficient way to represent and manipulate linear equations, paving the way for solving complex systems using inverse matrices.

๐Ÿ”‘ Key Principles

  • ๐Ÿ”ข Matrix Representation: Represent the system of equations in the form $AX = B$, where $A$ is the coefficient matrix, $X$ is the variable matrix, and $B$ is the constant matrix.
  • โž• Finding the Inverse: Calculate the inverse of the coefficient matrix $A$, denoted as $A^{-1}$. For a 2x2 matrix $A = \begin{bmatrix} a & b \\ c & d \end{bmatrix}$, the inverse is given by $A^{-1} = \frac{1}{ad - bc} \begin{bmatrix} d & -b \\ -c & a \end{bmatrix}$, provided that $ad - bc \neq 0$.
  • โž— Solving for Variables: Multiply both sides of the equation $AX = B$ by $A^{-1}$ to get $X = A^{-1}B$. This gives the solution for the variables.

๐Ÿ“ Step-by-Step Guide

  1. Step 1: Write the System in Matrix Form
  2. Given a system of equations:

    $\begin{cases} a_1x + b_1y = c_1 \\ a_2x + b_2y = c_2 \end{cases}$

    Represent it as $AX = B$:

    $\begin{bmatrix} a_1 & b_1 \\ a_2 & b_2 \end{bmatrix} \begin{bmatrix} x \\ y \end{bmatrix} = \begin{bmatrix} c_1 \\ c_2 \end{bmatrix}$

  3. Step 2: Find the Inverse of Matrix A
  4. For $A = \begin{bmatrix} a_1 & b_1 \\ a_2 & b_2 \end{bmatrix}$, the inverse $A^{-1}$ is:

    $A^{-1} = \frac{1}{a_1b_2 - a_2b_1} \begin{bmatrix} b_2 & -b_1 \\ -a_2 & a_1 \end{bmatrix}$

    Ensure that $a_1b_2 - a_2b_1 \neq 0$ (the determinant is not zero).

  5. Step 3: Multiply $A^{-1}$ by B
  6. Multiply the inverse matrix $A^{-1}$ by the constant matrix $B$ to find the solution matrix $X$:

    $X = A^{-1}B$

    $\begin{bmatrix} x \\ y \end{bmatrix} = \frac{1}{a_1b_2 - a_2b_1} \begin{bmatrix} b_2 & -b_1 \\ -a_2 & a_1 \end{bmatrix} \begin{bmatrix} c_1 \\ c_2 \end{bmatrix}$

  7. Step 4: Solve for x and y
  8. Perform the matrix multiplication to find the values of $x$ and $y$.

    $\begin{bmatrix} x \\ y \end{bmatrix} = \begin{bmatrix} \frac{b_2c_1 - b_1c_2}{a_1b_2 - a_2b_1} \\ \frac{-a_2c_1 + a_1c_2}{a_1b_2 - a_2b_1} \end{bmatrix}$

    Thus, $x = \frac{b_2c_1 - b_1c_2}{a_1b_2 - a_2b_1}$ and $y = \frac{-a_2c_1 + a_1c_2}{a_1b_2 - a_2b_1}$.

๐ŸŒ Real-world Examples

Consider the system:

$\begin{cases} 2x + 3y = 8 \\ x - y = -1 \end{cases}$

  1. Matrix Form:
  2. $\begin{bmatrix} 2 & 3 \\ 1 & -1 \end{bmatrix} \begin{bmatrix} x \\ y \end{bmatrix} = \begin{bmatrix} 8 \\ -1 \end{bmatrix}$

  3. Inverse of A:
  4. $A^{-1} = \frac{1}{(2)(-1) - (3)(1)} \begin{bmatrix} -1 & -3 \\ -1 & 2 \end{bmatrix} = \frac{1}{-5} \begin{bmatrix} -1 & -3 \\ -1 & 2 \end{bmatrix} = \begin{bmatrix} \frac{1}{5} & \frac{3}{5} \\ \frac{1}{5} & -\frac{2}{5} \end{bmatrix}$

  5. Multiply $A^{-1}$ by B:
  6. $\begin{bmatrix} x \\ y \end{bmatrix} = \begin{bmatrix} \frac{1}{5} & \frac{3}{5} \\ \frac{1}{5} & -\frac{2}{5} \end{bmatrix} \begin{bmatrix} 8 \\ -1 \end{bmatrix} = \begin{bmatrix} \frac{8}{5} - \frac{3}{5} \\ \frac{8}{5} + \frac{2}{5} \end{bmatrix} = \begin{bmatrix} 1 \\ 2 \end{bmatrix}$

  7. Solution:
  8. $x = 1$ and $y = 2$

๐Ÿ’ก Conclusion

Solving 2x2 linear systems using inverse matrices provides a structured and efficient method, especially when dealing with multiple systems sharing the same coefficient matrix. Understanding the underlying principles and practicing with examples can make this technique a valuable tool in your mathematical toolkit.

Join the discussion

Please log in to post your answer.

Log In

Earn 2 Points for answering. If your answer is selected as the best, you'll get +20 Points! ๐Ÿš€