williams.diana11
williams.diana11 7d ago โ€ข 0 views

Solved examples: Condensing logarithmic expressions with multiple terms

Hey there! ๐Ÿ‘‹ Ever get lost trying to simplify those crazy logarithmic expressions? It can feel like a puzzle, but I promise it's totally doable! Let's break it down with some examples and then test your skills with a quick quiz. Ready to become a log master? ๐Ÿค“
๐Ÿงฎ Mathematics

1 Answers

โœ… Best Answer

๐Ÿ“š Quick Study Guide

  • ๐Ÿ”‘ Product Rule: โž• $\log_b(MN) = \log_b(M) + \log_b(N)$
  • โž— Quotient Rule: โž– $\log_b(\frac{M}{N}) = \log_b(M) - \log_b(N)$
  • ๐Ÿ”ข Power Rule: โšก $\log_b(M^k) = k \cdot \log_b(M)$
  • ๐Ÿ’ก Combining Terms: Use these rules in reverse to condense. For example, $2\log(x) + 3\log(y) - \log(z) = \log(\frac{x^2y^3}{z})$
  • ๐Ÿง Common Logarithm: If the base isn't written, it's base 10.

Practice Quiz

  1. What is the condensed form of $\log(5) + \log(x) - \log(2)$?
    1. $\log(5x/2)$
    2. $\log(5 + x - 2)$
    3. $\log(5x - 2)$
    4. $\log(5/2x)$
  2. Condense the expression: $2\log_b(x) + 3\log_b(y)$
    1. $\log_b(x^2y^3)$
    2. $\log_b(x^2 + y^3)$
    3. $\log_b(6xy)$
    4. $\log_b((x+y)^5)$
  3. What is the condensed form of $3\log(x) - \frac{1}{2}\log(y) + \log(z)$?
    1. $\log(\frac{x^3z}{\sqrt{y}})$
    2. $\log(\frac{x^3}{z\sqrt{y}})$
    3. $\log(\frac{3x}{2\sqrt{y}z})$
    4. $\log(x^3 - \sqrt{y} + z)$
  4. Condense: $\log(a) - \log(b) + \log(c) - \log(d)$
    1. $\log(\frac{ac}{bd})$
    2. $\log(\frac{a-b}{c-d})$
    3. $\log(a-b+c-d)$
    4. $\log(\frac{ad}{bc})$
  5. Simplify: $\frac{1}{2} \log(9) + 2 \log(2) - \log(3)$
    1. $\log(\frac{4 \cdot 3}{3}) = \log(4)$
    2. $\log(\frac{\sqrt{9} + 4}{3})$
    3. $\log(\frac{9}{4 \cdot 3})$
    4. $\log(\frac{\sqrt{9} \cdot 4}{3})$
  6. Condense the expression: $\log_2(8) + \log_2(4) - \log_2(2)$
    1. $\log_2(16)$
    2. $\log_2(10)$
    3. $\log_2(32)$
    4. $\log_2(4)$
  7. What is the condensed form of $\log(100) - \log(10) + \log(1)$?
    1. $\log(10)$
    2. $\log(91)$
    3. $\log(11)$
    4. $\log(1000)$
Click to see Answers
  1. A
  2. A
  3. A
  4. A
  5. A
  6. A
  7. A

Join the discussion

Please log in to post your answer.

Log In

Earn 2 Points for answering. If your answer is selected as the best, you'll get +20 Points! ๐Ÿš€