rodriguez.martin67
rodriguez.martin67 Jan 17, 2026 โ€ข 0 views

Calculus review: Eliminating the parameter multiple choice questions

Hey there! ๐Ÿ‘‹๐Ÿฝ Let's tackle eliminating parameters in calculus. I know it can be tricky, so I've put together a quick study guide and a quiz to help you nail it! Good luck! ๐Ÿ€
๐Ÿงฎ Mathematics

1 Answers

โœ… Best Answer

๐Ÿ“š Quick Study Guide

  • ๐Ÿงญ Parametric Equations: Equations where $x$ and $y$ are defined in terms of a third variable, usually $t$. Example: $x = f(t)$, $y = g(t)$.
  • โœ๏ธ Eliminating the Parameter: The process of rewriting parametric equations as a single equation in terms of $x$ and $y$.
  • ๐Ÿ’ก Common Techniques:
    • Solve one equation for $t$ and substitute into the other.
    • Use trigonometric identities if trigonometric functions are involved (e.g., $\sin^2(t) + \cos^2(t) = 1$).
    • Consider algebraic manipulation to isolate $t$ terms.
  • ๐Ÿ“ Important Trigonometric Identities:
    • $\sin^2(\theta) + \cos^2(\theta) = 1$
    • $\tan(\theta) = \frac{\sin(\theta)}{\cos(\theta)}$
    • $\sec(\theta) = \frac{1}{\cos(\theta)}$
    • $\csc(\theta) = \frac{1}{\sin(\theta)}$
    • $\cot(\theta) = \frac{\cos(\theta)}{\sin(\theta)}$

Practice Quiz

  1. What is the Cartesian equation for the parametric equations $x = t + 1$ and $y = t^2$?
    1. $y = (x - 1)^2$
    2. $y = x^2 - 1$
    3. $y = x^2 + 1$
    4. $y = x^2$
  2. What is the Cartesian equation for the parametric equations $x = 2\cos(\theta)$ and $y = 2\sin(\theta)$?
    1. $x^2 + y^2 = 2$
    2. $x^2 + y^2 = 4$
    3. $\frac{x^2}{4} + \frac{y^2}{4} = 1$
    4. $\frac{x^2}{2} + \frac{y^2}{2} = 1$
  3. Eliminate the parameter $t$ from $x = t^3$ and $y = t^6 + 1$ to find the Cartesian equation.
    1. $y = x^2 + 1$
    2. $y = x^3 + 1$
    3. $y = x^2 - 1$
    4. $y = x^6 + 1$
  4. Find the Cartesian equation corresponding to the parametric equations $x = \sqrt{t}$ and $y = t + 3$.
    1. $y = x^2 + 3$
    2. $y = x + 3$
    3. $y = x^4 + 3$
    4. $y = \sqrt{x} + 3$
  5. Which Cartesian equation is equivalent to $x = e^t$ and $y = e^{2t}$?
    1. $y = x$
    2. $y = x^2$
    3. $y = 2x$
    4. $y = e^{x}$
  6. Eliminate the parameter $t$ in the equations $x = t - 1$ and $y = \frac{1}{t - 1}$.
    1. $y = \frac{1}{x}$
    2. $y = \frac{1}{x + 1}$
    3. $y = x - 1$
    4. $y = \frac{1}{x - 1}$
  7. Determine the Cartesian form of the parametric equations $x = 3\sin(t)$ and $y = 5\cos(t)$.
    1. $\frac{x^2}{9} + \frac{y^2}{25} = 1$
    2. $\frac{x^2}{25} + \frac{y^2}{9} = 1$
    3. $9x^2 + 25y^2 = 1$
    4. $25x^2 + 9y^2 = 1$
Click to see Answers
  1. A
  2. B
  3. A
  4. A
  5. B
  6. B
  7. A

Join the discussion

Please log in to post your answer.

Log In

Earn 2 Points for answering. If your answer is selected as the best, you'll get +20 Points! ๐Ÿš€