williams.tyler10
williams.tyler10 Jan 20, 2026 โ€ข 0 views

Solved Examples: Applying Half-Angle Identities to Find Exact Values

Hey there! ๐Ÿ‘‹ Struggling with half-angle identities? Don't worry, it's easier than you think! Let's break it down with some solved examples and a quiz to test your knowledge. Ready to ace this? Let's go! ๐Ÿค“
๐Ÿงฎ Mathematics

1 Answers

โœ… Best Answer
User Avatar
karen_mcgrath Jan 1, 2026

๐Ÿ“š Quick Study Guide

    ๐Ÿ” Half-angle identities are used to find the trigonometric function values of angles that are half of a known angle. ๐Ÿ’ก The half-angle identities for sine, cosine, and tangent are as follows:
    • ๐Ÿ“ $\sin(\frac{x}{2}) = \pm \sqrt{\frac{1 - \cos(x)}{2}}$
    • ๐Ÿงช $\cos(\frac{x}{2}) = \pm \sqrt{\frac{1 + \cos(x)}{2}}$
    • ๐Ÿ“ $\tan(\frac{x}{2}) = \pm \sqrt{\frac{1 - \cos(x)}{1 + \cos(x)}} = \frac{\sin(x)}{1 + \cos(x)} = \frac{1 - \cos(x)}{\sin(x)}$
    ๐ŸŒ The $\pm$ sign depends on the quadrant in which $\frac{x}{2}$ lies.

Practice Quiz

  1. What is the value of $\sin(15^{\circ})$ using the half-angle identity?
    1. $\frac{\sqrt{2 - \sqrt{3}}}{2}$
    2. $\frac{\sqrt{2 + \sqrt{3}}}{2}$
    3. $\frac{\sqrt{3} - 1}{2}$
    4. $\frac{\sqrt{3} + 1}{2}$
  2. What is the value of $\cos(\frac{\pi}{8})$ using the half-angle identity?
    1. $\sqrt{\frac{2 + \sqrt{2}}{2}}$
    2. $\frac{\sqrt{2 + \sqrt{2}}}{2}$
    3. $\sqrt{\frac{2 - \sqrt{2}}{2}}$
    4. $\frac{\sqrt{2 - \sqrt{2}}}{2}$
  3. What is the value of $\tan(22.5^{\circ})$ using the half-angle identity?
    1. $\sqrt{2} + 1$
    2. $\sqrt{2} - 1$
    3. $1 - \sqrt{2}$
    4. $-\sqrt{2} - 1$
  4. If $\cos(x) = \frac{1}{3}$ and $0 < x < \frac{\pi}{2}$, what is $\sin(\frac{x}{2})$?
    1. $\frac{\sqrt{3}}{3}$
    2. $\frac{\sqrt{6}}{3}$
    3. $\frac{\sqrt{2}}{3}$
    4. $\frac{\sqrt{5}}{3}$
  5. If $\cos(x) = -\frac{1}{4}$ and $\pi < x < \frac{3\pi}{2}$, what is $\cos(\frac{x}{2})$?
    1. $\frac{\sqrt{6}}{4}$
    2. $-\frac{\sqrt{6}}{4}$
    3. $\frac{\sqrt{10}}{4}$
    4. $-\frac{\sqrt{10}}{4}$
  6. Which of the following is equivalent to $\tan(\frac{x}{2})$?
    1. $\frac{1 + \cos(x)}{\sin(x)}$
    2. $\frac{\sin(x)}{1 + \cos(x)}$
    3. $\frac{1}{\cos(x)}$
    4. $\frac{1}{\sin(x)}$
  7. Simplify $\sqrt{\frac{1 - \cos(2x)}{2}}$
    1. $\cos(x)$
    2. $\sin(x)$
    3. $\pm \sin(x)$
    4. $\pm \cos(x)$
Click to see Answers
  1. A
  2. B
  3. B
  4. B
  5. D
  6. B
  7. C

Join the discussion

Please log in to post your answer.

Log In

Earn 2 Points for answering. If your answer is selected as the best, you'll get +20 Points! ๐Ÿš€