joseph287
joseph287 Jan 18, 2026 • 0 views

Test questions: Solving trig equations for exact values and general solutions

Hey there! 👋 Solving trig equations can seem tricky, but with a solid understanding of the unit circle and some key identities, you'll be finding exact values and general solutions in no time! Let's review some basics and then test your knowledge with a quick quiz! 🧮
🧮 Mathematics

1 Answers

✅ Best Answer
User Avatar
amy690 Dec 31, 2025

📚 Quick Study Guide

    🧭
  • Unit Circle: Know your special angles (0, $\frac{\pi}{6}$, $\frac{\pi}{4}$, $\frac{\pi}{3}$, $\frac{\pi}{2}$, etc.) and their corresponding sine, cosine, and tangent values.
  • 📐
  • Trigonometric Identities: Master the fundamental identities like $\sin^2(x) + \cos^2(x) = 1$, $\tan(x) = \frac{\sin(x)}{\cos(x)}$, and reciprocal identities.
  • General Solutions: If $\sin(x) = a$, then $x = \arcsin(a) + 2\pi k$ or $x = \pi - \arcsin(a) + 2\pi k$, where $k$ is an integer. Similarly, for cosine, if $\cos(x) = a$, then $x = \arccos(a) + 2\pi k$ or $x = -\arccos(a) + 2\pi k$. For tangent, if $\tan(x) = a$, then $x = \arctan(a) + \pi k$.
  • 📈
  • Exact Values: These are solutions expressed without using a calculator (e.g., $\frac{\sqrt{2}}{2}$, $\frac{\sqrt{3}}{2}$, 1, 0, -1).
  • 💡
  • Solving Steps:
    1. Isolate the trigonometric function.
    2. Find the principal value (using the unit circle or inverse trigonometric functions).
    3. Write the general solution, considering all possible angles in the interval $[0, 2\pi)$.

🧪 Practice Quiz

  1. What is the general solution for $\sin(x) = \frac{1}{2}$?
    1. $x = \frac{\pi}{6} + 2\pi k$
    2. $x = \frac{\pi}{6} + 2\pi k$ or $x = \frac{5\pi}{6} + 2\pi k$
    3. $x = \frac{\pi}{3} + 2\pi k$
    4. $x = \frac{\pi}{3} + 2\pi k$ or $x = \frac{2\pi}{3} + 2\pi k$
  2. What is the exact value of $x$ for $\cos(x) = \frac{\sqrt{3}}{2}$ in the interval $[0, \frac{\pi}{2}]$?
    1. $\frac{\pi}{6}$
    2. $\frac{\pi}{4}$
    3. $\frac{\pi}{3}$
    4. $\frac{\pi}{2}$
  3. Find the general solution for $\tan(x) = 1$.
    1. $x = \frac{\pi}{4} + \pi k$
    2. $x = \frac{\pi}{4} + 2\pi k$
    3. $x = \frac{5\pi}{4} + \pi k$
    4. $x = \frac{5\pi}{4} + 2\pi k$
  4. Solve for $x$ in the interval $[0, 2\pi)$: $2\sin(x) + 1 = 0$.
    1. $\frac{\pi}{6}, \frac{5\pi}{6}$
    2. $\frac{7\pi}{6}, \frac{11\pi}{6}$
    3. $\frac{\pi}{3}, \frac{2\pi}{3}$
    4. $\frac{4\pi}{3}, \frac{5\pi}{3}$
  5. What is the general solution for $\cos(2x) = 0$?
    1. $x = \frac{\pi}{4} + \pi k$
    2. $x = \frac{\pi}{2} + \pi k$
    3. $x = \frac{\pi}{4} + \frac{\pi}{2} k$
    4. $x = \frac{\pi}{2} + 2\pi k$
  6. Find the exact values of $x$ for $\sin^2(x) = 1$ in the interval $[0, 2\pi)$.
    1. $0, \pi$
    2. $\frac{\pi}{2}, \frac{3\pi}{2}$
    3. $\frac{\pi}{4}, \frac{3\pi}{4}$
    4. $\frac{\pi}{6}, \frac{5\pi}{6}$
  7. Determine the general solution for $\sqrt{3}\tan(x) - 1 = 0$.
    1. $x = \frac{\pi}{6} + \pi k$
    2. $x = \frac{\pi}{6} + 2\pi k$
    3. $x = \frac{\pi}{3} + \pi k$
    4. $x = \frac{\pi}{3} + 2\pi k$
Click to see Answers
  1. B
  2. A
  3. A
  4. B
  5. C
  6. B
  7. A

Join the discussion

Please log in to post your answer.

Log In

Earn 2 Points for answering. If your answer is selected as the best, you'll get +20 Points! 🚀