butler.sara94
butler.sara94 7d ago โ€ข 0 views

Eliminating the Parameter: Techniques and Solved Examples

Hey everyone! ๐Ÿ‘‹ Let's tackle 'Eliminating the Parameter' in math. I've got a quick study guide and a quiz to help you ace this. Good luck! ๐Ÿ€
๐Ÿงฎ Mathematics

1 Answers

โœ… Best Answer
User Avatar
kristin793 Dec 27, 2025

๐Ÿ“š Quick Study Guide

    ๐Ÿ” What is Eliminating the Parameter? It's the process of rewriting a set of parametric equations as a single equation in terms of $x$ and $y$, effectively removing the parameter (usually $t$ or $\theta$). ๐Ÿ’ก Common Techniques:
  • Substitution: Solve one equation for the parameter and substitute it into the other equation.
  • Trigonometric Identities: Use identities like $\sin^2(\theta) + \cos^2(\theta) = 1$ when dealing with trigonometric parametric equations.
  • ๐Ÿ”ข Algebraic Manipulation: Employ algebraic techniques like squaring, cubing, or taking reciprocals to eliminate the parameter. ๐Ÿ“ Key Formulas:
  • If $x = f(t)$ and $y = g(t)$, solve for $t$ in one equation (e.g., $t = h(x)$) and substitute into the other: $y = g(h(x))$.
  • For trigonometric parameters: Use identities like $\sin^2(t) + \cos^2(t) = 1$, $\sec^2(t) - \tan^2(t) = 1$, and $\csc^2(t) - \cot^2(t) = 1$.

Practice Quiz

  1. Question 1: Given $x = t + 1$ and $y = t^2$, eliminate the parameter $t$.
    1. $y = x^2 - 2x + 1$
    2. $y = x^2 + 2x + 1$
    3. $y = x^2 - 1$
    4. $y = x^2 + 1$
  2. Question 2: Given $x = 2\cos(\theta)$ and $y = 2\sin(\theta)$, eliminate the parameter $\theta$.
    1. $x^2 + y^2 = 2$
    2. $x^2 + y^2 = 4$
    3. $x + y = 2$
    4. $x - y = 2$
  3. Question 3: Given $x = t^3$ and $y = t^2$, eliminate the parameter $t$.
    1. $y = x^{\frac{2}{3}}$
    2. $y = x^{\frac{3}{2}}$
    3. $y = x^2$
    4. $y = x^3$
  4. Question 4: Given $x = e^t$ and $y = e^{2t}$, eliminate the parameter $t$.
    1. $y = x$
    2. $y = x^2$
    3. $y = 2x$
    4. $y = x^3$
  5. Question 5: Given $x = \tan(\theta)$ and $y = \sec(\theta)$, eliminate the parameter $\theta$.
    1. $y^2 - x^2 = 1$
    2. $x^2 - y^2 = 1$
    3. $x^2 + y^2 = 1$
    4. $x + y = 1$
  6. Question 6: Given $x = 3t - 1$ and $y = 6t + 2$, eliminate the parameter $t$.
    1. $y = 2x + 4$
    2. $y = 2x - 4$
    3. $y = x + 4$
    4. $y = x - 4$
  7. Question 7: Given $x = \sqrt{t}$ and $y = t + 1$, eliminate the parameter $t$.
    1. $y = x^2 + 1$
    2. $y = x^2 - 1$
    3. $y = x + 1$
    4. $y = x - 1$
Click to see Answers
  1. A
  2. B
  3. A
  4. B
  5. A
  6. A
  7. A

Join the discussion

Please log in to post your answer.

Log In

Earn 2 Points for answering. If your answer is selected as the best, you'll get +20 Points! ๐Ÿš€