kyle.lucero
kyle.lucero 4h ago โ€ข 0 views

Step-by-step examples for proving Pythagorean identities

Hey! ๐Ÿ‘‹ Let's break down proving Pythagorean identities with some super clear examples. I always found these a bit tricky, but with a step-by-step approach, it becomes much easier! Then, test your knowledge with a quick quiz. Good luck! ๐Ÿ€
๐Ÿงฎ Mathematics

1 Answers

โœ… Best Answer
User Avatar
alexbrock1995 Jan 4, 2026

๐Ÿ“š Quick Study Guide

  • ๐Ÿ“ The Pythagorean identity is: $\sin^2(\theta) + \cos^2(\theta) = 1$.
  • ๐Ÿ”„ We can manipulate this identity to get: $\sin^2(\theta) = 1 - \cos^2(\theta)$ and $\cos^2(\theta) = 1 - \sin^2(\theta)$.
  • โž— Dividing the original identity by $\cos^2(\theta)$ gives: $\tan^2(\theta) + 1 = \sec^2(\theta)$.
  • โž• Similarly, dividing by $\sin^2(\theta)$ gives: $1 + \cot^2(\theta) = \csc^2(\theta)$.
  • ๐Ÿ’ก When proving identities, start with the more complex side and simplify it to match the other side.
  • โœ๏ธ Use algebraic manipulations and other trigonometric identities to simplify.
  • ๐Ÿง Remember definitions: $\tan(\theta) = \frac{\sin(\theta)}{\cos(\theta)}$, $\cot(\theta) = \frac{\cos(\theta)}{\sin(\theta)}$, $\sec(\theta) = \frac{1}{\cos(\theta)}$, $\csc(\theta) = \frac{1}{\sin(\theta)}$.

Practice Quiz

  1. What is the fundamental Pythagorean identity?
    1. $\sin(\theta) + \cos(\theta) = 1$
    2. $\sin^2(\theta) + \cos^2(\theta) = 1$
    3. $\tan^2(\theta) + \cot^2(\theta) = 1$
    4. $\sec^2(\theta) + \csc^2(\theta) = 1$
  2. Which of the following is equivalent to $\sin^2(\theta)$?
    1. $1 + \cos^2(\theta)$
    2. $1 - \cos^2(\theta)$
    3. $\cos^2(\theta) - 1$
    4. $\frac{1}{\cos^2(\theta)}$
  3. What identity do you get when you divide $\sin^2(\theta) + \cos^2(\theta) = 1$ by $\cos^2(\theta)$?
    1. $1 + \cot^2(\theta) = \csc^2(\theta)$
    2. $\tan^2(\theta) - 1 = \sec^2(\theta)$
    3. $\tan^2(\theta) + 1 = \sec^2(\theta)$
    4. $1 + \tan^2(\theta) = \csc^2(\theta)$
  4. $\tan^2(\theta)$ is equal to which of the following?
    1. $\sec^2(\theta) + 1$
    2. $\sec^2(\theta) - 1$
    3. $1 - \sec^2(\theta)$
    4. $\csc^2(\theta) - 1$
  5. Which expression is equivalent to $\csc^2(\theta) - 1$?
    1. $\tan^2(\theta)$
    2. $\sec^2(\theta)$
    3. $\cot^2(\theta)$
    4. $\sin^2(\theta)$
  6. Simplify the expression: $\frac{\sin^2(\theta)}{1 - \cos^2(\theta)}$
    1. $\cos^2(\theta)$
    2. $\sin^2(\theta)$
    3. $1$
    4. $\tan^2(\theta)$
  7. Which of the following is NOT a Pythagorean identity?
    1. $\sin^2(\theta) + \cos^2(\theta) = 1$
    2. $1 + \cot^2(\theta) = \csc^2(\theta)$
    3. $\tan^2(\theta) + 1 = \sec^2(\theta)$
    4. $\sin^2(\theta) - \cos^2(\theta) = 1$
Click to see Answers
  1. B
  2. B
  3. C
  4. B
  5. C
  6. C
  7. D

Join the discussion

Please log in to post your answer.

Log In

Earn 2 Points for answering. If your answer is selected as the best, you'll get +20 Points! ๐Ÿš€