brenda_campbell
brenda_campbell 5d ago โ€ข 0 views

Solved Examples: Rationalizing Monomial Denominators

Hey there, Mathletes! ๐Ÿ‘‹ Ready to level up your algebra skills? We're diving into rationalizing monomial denominators. It sounds fancy, but it's super useful for simplifying expressions. Let's get started with a quick study guide and then test your knowledge with a practice quiz! ๐Ÿค“
๐Ÿงฎ Mathematics

1 Answers

โœ… Best Answer

๐Ÿ“š Quick Study Guide

  • ๐Ÿ” Rationalizing the Denominator: The process of eliminating radicals (like square roots) from the denominator of a fraction.
  • ๐Ÿ’ก Monomial Denominator: A denominator consisting of a single term (e.g., $3\sqrt{x}$, $5y^2$).
  • ๐Ÿ“ Key Principle: Multiply both the numerator and denominator by a suitable expression that will eliminate the radical in the denominator.
  • โž— For Square Roots: If the denominator is $\sqrt{a}$, multiply both numerator and denominator by $\sqrt{a}$.
  • โž• For nth Roots: If the denominator is $\sqrt[n]{a^m}$, multiply both numerator and denominator by $\sqrt[n]{a^{n-m}}$.
  • ๐Ÿ”ข Example: To rationalize $\frac{1}{\sqrt{2}}$, multiply by $\frac{\sqrt{2}}{\sqrt{2}}$ to get $\frac{\sqrt{2}}{2}$.
  • ๐Ÿง  General Formula: $\frac{a}{\sqrt[n]{b^m}} = \frac{a}{\sqrt[n]{b^m}} \cdot \frac{\sqrt[n]{b^{n-m}}}{\sqrt[n]{b^{n-m}}} = \frac{a\sqrt[n]{b^{n-m}}}{b}$

Practice Quiz

  1. Question 1: What is the first step in rationalizing a monomial denominator?
    1. A. Simplify the numerator.
    2. B. Identify the radical in the denominator.
    3. C. Square both the numerator and denominator.
    4. D. Add 1 to the denominator.
  2. Question 2: Rationalize the denominator: $\frac{2}{\sqrt{3}}$
    1. A. $\frac{2\sqrt{3}}{9}$
    2. B. $\frac{\sqrt{3}}{3}$
    3. C. $\frac{2\sqrt{3}}{3}$
    4. D. $\sqrt{3}$
  3. Question 3: Rationalize the denominator: $\frac{5}{\sqrt{5}}$
    1. A. $\sqrt{5}$
    2. B. $5\sqrt{5}$
    3. C. $\frac{\sqrt{5}}{5}$
    4. D. $25$
  4. Question 4: Rationalize the denominator: $\frac{1}{\sqrt[3]{2}}$
    1. A. $\frac{\sqrt[3]{4}}{2}$
    2. B. $\frac{\sqrt[3]{2}}{2}$
    3. C. $\frac{1}{2}$
    4. D. $\sqrt[3]{4}$
  5. Question 5: Rationalize the denominator: $\frac{4}{\sqrt[4]{8}}$
    1. A. $2\sqrt[4]{2}$
    2. B. $\sqrt[4]{2}$
    3. C. $\frac{\sqrt[4]{2}}{2}$
    4. D. $\frac{4\sqrt[4]{2}}{2}$
  6. Question 6: Simplify $\frac{x}{\sqrt{x}}$ assuming x > 0.
    1. A. $x$
    2. B. $\sqrt{x}$
    3. C. $x^2$
    4. D. $1$
  7. Question 7: Rationalize the denominator: $\frac{7}{\sqrt[5]{16}}$
    1. A. $\frac{7\sqrt[5]{4}}{4}$
    2. B. $\frac{\sqrt[5]{4}}{2}$
    3. C. $\frac{7\sqrt[5]{16}}{4}$
    4. D. $\frac{7\sqrt[5]{2}}{2}$
Click to see Answers
  1. Answer: B
  2. Answer: C
  3. Answer: A
  4. Answer: A
  5. Answer: A
  6. Answer: B
  7. Answer: A

Join the discussion

Please log in to post your answer.

Log In

Earn 2 Points for answering. If your answer is selected as the best, you'll get +20 Points! ๐Ÿš€